

 Navigation

 	
 index

 	
 next |

 	Entity–Boundary–Interactor 0.1.0-alpha documentation

Entity—Boundary—Interactor

A modern application architecture

This repository contains a description and an example implementation
examples of the Entity—Boundary—Interactor (EBI) application
architecture, derived from ideas initially conceived by Uncle Bob in
his series of talks titled Architecture: The Lost Years [https://www.youtube.com/watch?v=HhNIttd87xs] and his book [http://www.amazon.com/Software-Development-Principles-Patterns-Practices/dp/0135974445/ref=asap_bc?ie=UTF8].

The EBI architecture is a modern application architecture suited for a
wide range of application styles. It is especially suitable for web
application APIS, but the idea of EBI is to produce an implementation
agnostic architecture, it is not tied to a specific platform,
application, language or framework. It is a way to design programs, not
a library.

The name Entity–Boundary—Interactor originates from a master’s
thesis [https://jyx.jyu.fi/dspace/bitstream/handle/123456789/41024/URN:NBN:fi:jyu-201303071297.pdf?sequence=1]
where this architecture is studied in depth. Names that are common or
synonymous are EBC where C stands for Controller.

Examples of how to implement the architecture are given in this document
and are written in Elixir, a dynamically typed language with a simple
and powerful syntax.

Warning

This is still very much a work in progress. Contributions are
welcome on Github [https://github.com/ane/ebi].

Entity–Boundary–Interactor

	Introduction
	How does this archtecture differ from MVC?

	Design Goals
	Extensibility

	Testability

	Stability

	Summary

	The Architecture

	Structuring Applications

	Event Lifecycles
	Web: the life-cycle of a HTTP request

	GUI: the life-cycle of an event

Layers

	Overview

	The Presentation Layer

	The Boundary Layer
	Designing good DTOs

	Wrapping up

	The Core Layer
	Entities

	Interactors

	Beware of Behemoths

In Practice

	Talking to the External World

Examples

	A REST API

Reference

	License

	FAQ

 Copyright 2015, Antoine Kalmbach.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Entity–Boundary–Interactor 0.1.0-alpha documentation

Introduction

The architecture of something screams the intent.

Robert C. Martin

Often when looking at the code of web applications, you are greeted
with a mass of folders, library installation, and tooling
configurations. The code is structured haphazardly into nondescriptive
folders like app, and the dependency layout of the application is
a jungle.

As a result, the purpose and architecture of the program become
opaque.

The architecture of an application is driven by its use cases.

Ivar Jacobsen

The idea is to design programs so that their architectures immediately
present their use case. It’s a way to design programs so that its
internal dependency graph is organized cleanly and its elements are
joined together with as loose coupling as possible.

Ultimately, the goal is the separation of concerns between
application layers, this architecture and many like it aren’t
dependent on presentation models or platforms. All the arrows, or
dependencies, point inwards in the abstraction chain, each successive
layer less abstract than the one before it.

Keeping the arrows pointing inwards makes the code easy to maintain,
extend, test and refactor. EBI imposes some architectural requirements
on the programmers, that is, you must navigate around its rules, but
this is kept at a minimum.

How does this archtecture differ from MVC?

The difference between EBI and MVC is that an EBI architecture is
that the business logic of the application is designed to be
platform-agnostic of its delivery mechanism.

To paraphrase, this means that the business logic parts, interactors and
entities, do not know in which medium they’re being accessed from. It
could be from a web server, a unit test, or a GUI application.

Contrast this to MVC, where there is always a dependency on the
delivery mechanism. No matter how hard you tried, you cannot tear
Rails controllers out of the web world.

What makes decoupling the business logic from the delivery mechanism a
good thing? This is outlined in the next section, `ref`:design:.

 Copyright 2015, Antoine Kalmbach.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Entity–Boundary–Interactor 0.1.0-alpha documentation

Design Goals

Todo

write summary

Extensibility

Testability

Stability

Summary

The above architecture is suited for any language and any use case.
One only needs an ability to define abstractions, were they type
classes, interfaces, OCaml modules, Rust traits, or Clojure protocols.
Static typing is not required here: you just need one way of creating
clear and verifiable functionality definitions. In dynamically typed
languages like Clojure and Elixir you can use protocols (with runtime
assertions), or even just plain old documentation. The boundary layer
needs only to be specified, it’s not a strict language requirement.

The arrows in this architecture tend to point inwards. Only the middle
layer (the service layer) is seen by both the Core and the API layer is
because it describes the language of the system, but none of its
functionality.

Keeping the arrows unidirectional will make the system more robust and
scalable. If you decide to port your GUI app to a web service the
interactors will stay the same.

Moreover, unit testing is easy: you can mock anything, and what is
more, the unit tests will be fast and simple. Entities will only test
their internal business logic, interactors will not fumble with web
services, the presentation layer will only deal with handling requests
and responses and calling the right interactor, the host layer will
contain system-specific tests (e.g. HTTP tests), but all of these
components can be tested separately in a horizontal fashion.

 Copyright 2015, Antoine Kalmbach.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Entity–Boundary–Interactor 0.1.0-alpha documentation

The Architecture

[image: An overview of all the logical units of the architecture.]
An overview of all the logical units of the architecture.

The architecture can be approached from two different perspectives. The
first is the dependency graph, as you can see above. The second is the
hierarchy graph, which presents a concrete separation in a program.

The architecture is best described as a functional data-driven
architecture, where requests are processed into results. The
architecture consists of three different components.

	Entities are the core of the architecture. Entities represent
business objects that have application independent business rules.
They could be Books in a library or Employee in an employee
registry. All the application agnostic business rules should be
located in the entities.

	Boundaries are the link to the outside world. A boundary can
implement functionality for processing data for a graphical user
interface or a web API. Boundaries are functional in nature: they
accept data requests and produce responses as result. These
abstractions are concretely implemented by interactors.

	Interactors manipulate entities. Their job is to accept requests
through the boundaries and manipulate application state. Interactors
is the business logic layer of the application: interactors act on
requests and decide what to do with them. Interactors know of request
and response models called DTOs, data transfer objects.
Interactors are concrete implementations of boundaries.

[image: An object diagram of the program.]
An object diagram of the program.

 Copyright 2015, Antoine Kalmbach.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Entity–Boundary–Interactor 0.1.0-alpha documentation

Structuring Applications

[image: Organization]
The code-level organization of modules. Each vertical section is an
separate module of the program.

Furthermore, it is good practice to separate the EBI architecture itself
into five different layers. These layers correspond to namespaces or
packages in your language of choice.

	The Host layer implements a physical manifestation of the API,
e.g., a web server

	The API layer is the interface to the program itself, which
accepts input and translates it into DTOs, passing them to

	The Service layer that contains boundaries and response
and request models

	The Core layer that contains a concrete implementation of the
service layer

	Interactors which implement boundaries and form the core business
logic of the application

	Entities which represent the data models of the program

Thus, when a program is constructed, the API is built top-down using
dependency injection. The Host layer is the one doing the DI of the
concrete interactors.

And that’s it. The interactors do not know what protocol its requests
come from or are sent to, and the API doesn’t know what sort of an
interactor implements the service boundary.

 Copyright 2015, Antoine Kalmbach.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Entity–Boundary–Interactor 0.1.0-alpha documentation

Event Lifecycles

Todo

write summary

Web: the life-cycle of a HTTP request

[image: _images/life-cycle.png]
The request life-cycle of a request object in the HTTP context.

A request DTO enters the application via the request boundary. This is
usually the API layer sitting on top of some interactor. In the pictured
example, we have a GetGopher interactor whose task is to retrieve
information about a store of gophers, accepting GopherRequests and
returning GopherResponses. The user interaction is the request
DTO and in this example is in plain JSON.

The interactor GetGopher then can be seen as a mapping of
GetGopherRequests to GopherResponses. Because the requests
and responses are plain dumb objects, this implementation is not
dependent of any technology. It is the duty of the API layer to
translate the request from, e.g., JSON, to the request DTO, but the
interactor doesn’t know anything about the protocol or its environment.

GUI: the life-cycle of an event

In the GUI model, the architecture looks a bit simpler, since the host
layer does all the important work for us. We don’t need to worry about
serialization so much anymore.

The API layer of a GUI application translate user interactions to
request objects. The Host layer sends an AddAuthorButtonClick event
to the API. The API also listens to the AuthorNameFieldEdited event
using which it keeps track of the contents of the form field. Once the
AddAuthorButtonClick event is received, the API creates a
CreateAuthor request DTO with the appropriate details and sends it
to the interactor for processing. Once the interactor returns, the API layer pushes a response to the
Host via some mechanism, e.g., by formating and sending a
UserAdded event to the Host layer, which in turn handles the
updating of the user list component using its own logic.

As you can see, a GUI application implemented with EBI is instantly
a lot more complicated than a simple web server. This isn’t a
coincidence, it’s natural: GUI apps are really complicated
underneath.

The extra cost of such abstractions is that as the interactor and
entity layer remain unmodified, you can easily swap the API and Host
layer for another implementation. So you’re never tied to any certain
interaction or delivery mechanism.

 Copyright 2015, Antoine Kalmbach.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Entity–Boundary–Interactor 0.1.0-alpha documentation

Overview

From the directory tree one can see that the code is organized into
separate namespaces. In the example implementation this is achieved by
splitting the code into different folders, since this is a one-to-one
mapping to packages (namespaces) in the Go programming language.

The api folder contains the API, the host web servers or GUI
apps, the service contains the boundary layer with the request and
responses models, the core layer contains the core program
architecture hidden from view.

As mentioned previously, the purpose of the program should be visible by
looking at it. By exploring the service directory (containing
gophers.go et al.) we can immediately see the services this
program provides.

 Copyright 2015, Antoine Kalmbach.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Entity–Boundary–Interactor 0.1.0-alpha documentation

The Presentation Layer

The introduction of the API layer at this point may seem a bit
heavy-handed. Why not map the interactor methods directly to routes? I
mean, you could spin up a web server that handles Sinatra-like requests
and then points them to the right interactor and returns a serialized
version of whatever the interactor spewed out.

Indeed, if you have one interactor or a couple that don’t ever do
business together, this seems like the right approach. Once you get too
many, it gets useful to wrap them underneath a single unit.

Suppose you have an API endpoint of a book catalogue, and you want to
implement functionality that that modifies a particular author and at
the same time transfers these modifications to the publications. You
receive the new author name as input, and then you must update the
author itself and their book catalogue in one go.

Sure, sounds easy, just create a ModifyCatalogue functionality into
the Author interactor. The interactor, in this case, would modify
the author’s name, then loop over its Books and modify them
individually, finally sending the updates to a database. This system
works as long as the Book entities are under the sole ownership of
an Author–that is, there is no way of adding, creating, deleting,
or modifying a book from outside.

As soon as you introduce a Book interactor into the mix, things
start to get hairy. The Author service, retaining its book
modification logic, now overlaps with the Book service. The imminent
solution to this is to lift this logic from the Author interactor to
the Book interactor, making the layout look like this.

[image: a problem]
Could the blue arrow be removed, and contained inside the arrows
from the API layer pointing towards the Service layer?

The blue dashed arrow can be lifted into the API layer with little extra
work. It’s a good idea to push such arrows as far “up” as possible,
because this helps keep one thing in check: not violating the single
responsibility principle, which roughly means that your interactor
should do one thing and one thing only. So the Author interactor
should only care about author logic, and the Book interactor should care
only about book issues.

In the above example this process would not be violated if there was no
Book service, such that book-related logic was underneath the Author
interactor. But, as soon as you start sharing responsibilities, and they
start to overlap, you will run into problems.

Hence, the API layer is there to provide additional logic that ties two
interactors together. You could think of it as a meta-interactor,
something that operates on interactors only, but contains no low-level
business logic.

What is more, the API layer usually has some knowledge of the
application domain: while interactors deal with dumb objects (DTOs), the
API may be dealing with HTTP request objects. Thus, the API is closer to
the actual implementation.

Consequently, the Core layer is the non-duplicated, non-overlapping
part of the application: you may have multiple APIs for the same set of
interactors, and multiple hosts for each API, but at the fundamental
level, there’s only one canonical implementation of the core.

To conclude, the key differences between an API and an interactor are
the following:

	An API is domain-specific and knows about the target implementation.
The API knows it is talking to a web server. It just doesn’t know
which kind of web server it is talking to, acting as a bridge
between interactors and the delivery mechanism.

	The API layer may tie a multitude of interactors together, without
making them dependent on each other, enforcing loose coupling.

	APIs can be seen as “meta-interactors”, operating on interactors the
same way interactors operate on entities.

 Copyright 2015, Antoine Kalmbach.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Entity–Boundary–Interactor 0.1.0-alpha documentation

The Boundary Layer

Todo

flesh out

Designing good DTOs

DTOs have no business logic. Think of them as language constructs around
simple requests not dependent of any protocol.

In our Go program, the naming convention is to have a service “Foobar”
(in caps, can be a pluralized noun), and have it in
service/foobar.go, and its request and response models are all in
service/requests/foobar.go and service/responses/foobar.go.

Though these interfaces are named similarly, in Go, we refer to these
types as requests.FindGopher, hence it is never ambiguous as to what
the structures are. The requests (or responses) packages contain
only structures like these, hence there will never be any confusion
between the two.

In other languages, you would usually have a suffix of some sorts or use
a namespace explicitly to avoid repetition.

Wrapping up

The service layer is the common language of the application
architecture. When the API and core speak to each other, they do so via
an abstract boundary. They use DTOs (data transfer objects), simple
structures of data, for communication. We now move on to the core layer
of the architecture.

 Copyright 2015, Antoine Kalmbach.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Entity–Boundary–Interactor 0.1.0-alpha documentation

The Core Layer

The core layer contains actual business logic. First we start off with
the entity, the rich business objects of the application. In
core/entities/entity.go,

Entities

type Gopher struct {
 Name string
 Age int
}

Entities are completely invisible to the outside layers. Not any thing
but the interactors know about them. Entities contain business logic,
e.g., a Gopher entity can modify itself or contain functions related
to it, but the distinction between entities and interactors is the
following:

	entities modify themselves vs.

	interactors modify entities

An entity can contain other entities: a Gopher, could technically
possess a Tail and two Eyes, and it can modify them at will.
This hierarchy is strictly unidirectional: a Gopher doesn’t know
about other gophers, more importantly, it doesn’t know about the
interactor.

Interactors

Interactors contain rich business logic. They can manipulate entities
and they implement boundaries. Here, we have the Gophers boundary
from above to implement, so we implement a smallish interactor that
implements it.

type Gophers struct {
 burrow map[int]entities.Gopher
}

func NewGophers() *Gophers {
 return &Gophers{
 burrow: make(map[int]entities.Gopher),
 }
}

It implements the three methods as defined by the Gophers boundary

// Find finds a gopher from storage.
func (g Gophers) Find(req requests.FindGopher) (responses.FindGopher, error) {
 gopher, exists := g.burrow[req.ID]
 if !exists {
 return responses.FindGopher{}, errors.New("Not found.")
 }

 return gopher.ToFindGopher()
}

func (g Gophers) FindAll(req requests.FindGopher) ([]responses.FindGopher, error) {
 var resps []responses.FindGopher
 for _, gopher := range g.burrow {
 fg, err := gopher.ToFindGopher()
 if err != nil {
 return []responses.FindGopher{}, err
 }
 resps = append(resps, fg)
 }
 return resps, nil
}

// Create creates a gopher.
func (g Gophers) Create(req requests.CreateGopher) (responses.CreateGopher, error) {
 var gopher entities.Gopher
 if err := gopher.Validate(req); err != nil {
 return responses.CreateGopher{}, err
 }

 gopher.ID = g.getFreeKey()
 gopher.Name = req.Name
 gopher.Age = req.Age
 g.burrow[gopher.ID] = gopher

 return responses.CreateGopher{ID: gopher.ID}, nil
}

As one can see, the interactor is completely unaware of any protocol
dependencies. The relation to web applications is obvious: we are, after
all, talking about requests and responses, and the DTOs translate very
easily to JSON objects. But they can be used without JSON, in fact, the
whole point is that even a GUI application will pass the same objects
around.

The interactors (and by extension, entities) are completely oblivious to
their environment: they don’t care whether they are running inside a GUI
application, a system-level daemon, or a web server.

Beware of Behemoths

Interactors are business logic units. How much business logic is too
much business logic? The best rule of thumb is the single
responsibility principle: an interactor should only do one thing, and
one thing only. I’m also going to address this
below, but the most important thing to understand
about interactors is that they should operate only one one aspect of
the business logic.

What this means may not be immediately clear. If you are building a REST
API, you will generally have some separation of concerns already going
on at the external API level, in the form of URIs. To use a book
catalogue as an ad hoc example, you could have a URI for book authors at
/authors and /books, these clearly indicate—to the API user,
anyway—what lies beneath.

At the code level, this distinction must be maintained. An author may
contain a collection of books they have, but whose responsibility is
modifying them? Obviously, since we have two URIs here, one for books,
one for authors, we must decide which one handles the logic of modifying
book entities. In this case, any internal modification logic of the
book entities must reside underneath a single interactor. There can
be two cases here:

	One interactor does everything. The /books URI is just an
alias underneath the Author interactor, or vice versa.
	Pros: no overlap in logic, no conflicts, since everything is
contained under one unit (a single interactor).

	Cons: must be split eventually, since otherwise it will grow
to monstrous proportions.

	Two interactors, ``AuthorInteractor`` and ``BookInteractor``. The
AuthorInteractor calls methods of the IBookService (which
BookInteractor implements) to modify the Book entities
contained (or owned) by an Author entity.
	Pros: no chance of overlap since the responsibilities are
split.

	Cons: risk of introducing circular dependencies between
boundaries (see below).

If you’re building a really simple service, you don’t have to split
interactor duties, but it’s a good idea. Be careful of choosing
short-term practicality in favor of long-term abstractions, it may bite
you in the rear one day!

As a summary, in the presented example, the AuthorInteractor should
only modify things related to Authors, and preferably only read
data about Books, leaving modification and updates to the
BookInteractor. There are two ways on how to implement the necessary
communication, that is, how the AuthorInteractor calls the
BookInteractor, and this will be resolved later, but now we have a
small interlude about something equally vital: the external world.

 Copyright 2015, Antoine Kalmbach.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Entity–Boundary–Interactor 0.1.0-alpha documentation

Talking to the External World

One part I haven’t yet addressed in this overview is how to talk to
external dependencies, like a database. The answer is remarkably simple:
create them behind a boundary and build them like an interactor. This
enforces loose coupling, and the interactors still talk to each other
using interfaces.

Similarly, if you’re building a GUI application and want to use events,
the interactor can push events to an event broker boundary, or the API
layer can handle the responses from the interactor, and call other
interactors through their boundary interfaces. This brings us to the API
layer.

 Copyright 2015, Antoine Kalmbach.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Entity–Boundary–Interactor 0.1.0-alpha documentation

Example Implementation

A REST API in Elixir

This document features a small example implementation of this
architecture in Elixir. Elixir is a dynamically typed language
leveraging the Erlang virtual machine.

I chose Elixir because of its simple but powerful syntax. I originally
wanted to implement this in Ruby but I wanted clear examples of
interfaces and Ruby doesn’t really have them. Thankfully, Elixir has
protocols, which let me write the boundary descriptions using a
high-level abstraction.

Note

Interfaces aren’t absolutely necessary.

You don’t really need interfaces to implement boundaries, the
language-level abstractions make it easier to understand in its own
terms. Since no boundary object is an actual, concrete
implementation, it quickly becomes obvious that the boundary
objects, and thus the service layer, act as a data model inside
the system.

For Ruby and Python you could easily write a dummy abstract class
with NoMethodImplementation exceptions being thrown left and
right, in case of an unsatisfied boundary.

The Elixir implementation makes the use of the Spirit [https://github.com/citrusbyte/spirit] microframework for
Elixir. Equivalent frameworks in other applications:

	Ruby: Sinatra, Cuba

	JavaScript: Express

	Go: net/http

	C#: ServiceStack

	Java: SparkJava

...and so on.

.
├── api
│ └── web_api.ex
├── entities
│ ├── author.ex
│ └── publication.ex
├── host
│ └── server.ex
├── interactors
│ ├── author_service.ex
│ └── publication_service.ex
└── service
 ├── protocols.ex
 ├── requests.ex
 └── responses.ex

 Copyright 2015, Antoine Kalmbach.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Entity–Boundary–Interactor 0.1.0-alpha documentation

License

Copyright 2015 Antoine Kalmbach

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

 Copyright 2015, Antoine Kalmbach.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Entity–Boundary–Interactor 0.1.0-alpha documentation

FAQ

faq off

 Copyright 2015, Antoine Kalmbach.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Entity–Boundary–Interactor 0.1.0-alpha documentation

Index

 Copyright 2015, Antoine Kalmbach.
 Created using Sphinx 1.3.1.

 _images/hierarchy.png
EBI Application Module Organization

Host layer API Layer Service layer Core layer
apstract
APl Interactors Entiies
depends on boundary Boundary [« implements e s
olttorn apendent implementations boundaries i

implementation (6.
Sinatra, Fask, Grizzy,
Express or GUI
Irameworks)

behaves with a
medium in mind
(HTTP, GUI) but not
dependent of any.
particular
implementation

User

Request models
Response models

plain data objects
“the language of
the system”

_images/book-author-problem.png
API layer Service layer Core layer

AuthorService | fimplements

CatalogueAPI Authorlnteractor

update(Id : int)

~ ddpends _ - depends
S
BookService | fimplements

BookInteractor

update(Id : int)

_images/life-cycle.png
World

HTTP Request

read raw input

\Hosl

‘Web Server

fconvert to an object

A:’I

‘Web API

lsend request DTO

C ;re

Interactor

C ;re

Interactor

‘Web API

Host
A

‘Web Server

]

HTTP Response

_images/overview.png
Request Model

APl

Boundary

Interactors

Delivery Mechanism

Interface

Business logic

Web User

Response Model

Entity
Business object

_images/boundary.png
Data Format

JSON, XML, GUI events DTS DTS Structures

has boundaries Boundaries ' Entty
Req > Response Implements nteraciors - ees aumb objects

v

The AP receives requests and chooses the right boundary to call. It
receives interactors that implement this particular boundary as a
parameter. In the simplest of terms, a boundary is a mapping from
requests o responses.

_static/comment-close.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment.png

search.html

 Navigation

 		
 index

 		Entity–Boundary–Interactor 0.1.0-alpha documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Antoine Kalmbach.
 Created using Sphinx 1.3.1.

_static/down-pressed.png

_static/down.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/plus.png

